About periodicity of impulsive evolution equations through fixed point theory
نویسندگان
چکیده
*Correspondence: [email protected] 1Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China Full list of author information is available at the end of the article Abstract By processing the problem through fixed point theory and propagator theory, we investigate the periodicity of solutions to a class of impulsive evolution equations in Hilbert spaces and establish some existence theorems for periodic solutions. Moreover, the asymptotic stability of periodic solutions is obtained under suitable conditions. As one will see, the concept of an impulsive propagator is introduced for the first time in the paper.
منابع مشابه
Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.
متن کاملPeriodicity in a System of Differential Equations with Finite Delay
The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.
متن کاملImpulsive integrodifferential Equations and Measure of noncompactness
This paper is concerned with the existence of mild solutions for impulsive integro-differential equations with nonlocal conditions. We apply the technique measure of noncompactness in the space of piecewise continuous functions and by using Darbo-Sadovskii's fixed point theorem, we prove reasults about impulsive integro-differential equations for convex-power condensing operators.
متن کاملExistence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کاملControllability of Impulsive Fractional Evolution Integrodifferential Equations in Banach Spaces
According to fractional calculus theory and Banach’s fixed point theorem, we establish the sufficient conditions for the controllability of impulsive fractional evolution integrodifferential equations in Banach spaces. An example is provided to illustrate the theory.
متن کامل